import cv2 as cv import numpy as np import matplotlib.pyplot as plt # Feature set containing (x,y) values of 25 known/training data trainData = np.random.randint(0,100,(25,2)).astype(np.float32) # Label each one either Red or Blue with numbers 0 and 1 responses = np.random.randint(0,2,(25,1)).astype(np.float32) # Take Red neighbours and plot them red = trainData[responses.ravel()==0] plt.scatter(red[:,0],red[:,1],80,'r','^') # Take Blue neighbours and plot them blue = trainData[responses.ravel()==1] plt.scatter(blue[:,0],blue[:,1],80,'b','s') plt.show() newcomer = np.random.randint(0,100,(1,2)).astype(np.float32) plt.scatter(newcomer[:,0],newcomer[:,1],80,'g','o') knn = cv.ml.KNearest_create() knn.train(trainData, cv.ml.ROW_SAMPLE, responses) ret, results, neighbours ,dist = knn.findNearest(newcomer, 3) print( "result: {}\n".format(results) ) print( "neighbours: {}\n".format(neighbours) ) print( "distance: {}\n".format(dist) ) plt.show()